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A system comprising two edge-coupled plates is considered. Theoretical predictions of
the coupling power and coupling loss factor are made using traditional, ‘‘asymptotic’’ SEA
wave theory and an analytical wave solution application to rectangular plates. These are
compared to numerical frequency averages found by FEA of the complete system. Results
are presented for variously shaped plates and different levels of damping. If the damping
is large enough (i.e., for ‘‘weak’’ coupling) the response is independent of the shape of the
plates. For lighter damping (i.e., ‘‘strong’’ coupling) the response depends significantly on
the specific geometry of each plate: the coupling power is often substantially less than that
predicted by traditional SEA theory, which also overpredicts the coupling loss factor. Both
the coupling power and coupling loss factor are least for rectangular plates, for which the
irregularity of the subsystems is least. The reasons for this behaviour are attributed to wave
coherence or, in modal terms, to localisation of the global modes of the structure within
one or other subsystem. A parameter g0 is given which provides an estimate of the strength
of coupling. This parameter arises in the analysis of coupled rectangular plates and gives
a conservative estimate for irregularly shaped plates.
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1. INTRODUCTION

The analysis of higher frequency vibrations brings special difficulties. Conventional
deterministic (i.e., ‘‘exact’’) methods such as finite element analysis (FEA) become
inaccurate, partly because of the sheer size of the models required but primarily because
of the sensitivity of the response of the system to small details in its construction, its
properties and its boundary conditions, which are not known to sufficient accuracy.
Therefore alternative energy-based approaches, such as statistical energy analysis (SEA)
[1, 2], are often adopted. Such theories aim to predict the ensemble and/or frequency
average response of a system in terms of a few, gross, physical and geometric system
properties.

This paper concerns the SEA of a system which comprises two coupled plates.
Comparisons are made between SEA theories and broadband frequency average responses
calculated from FEA of plates of differing geometries. The intentions are to investigate
the effects of varying levels of damping (whether measured by loss factor, modal overlap
or base reflectance) and of subsystem irregularity on the accuracy of SEA predictions.

*Some of this work was performed while the second author was on sabbatical leave at the University of Auckland.
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Another intention is to examine the strength of coupling between the plates—this is
quantified in [3] for the case of rectangular plates, but the extent to which conclusions
drawn from [3] are applicable to plates of arbitrary geometry is unknown.

In the next section the SEA model of the two-plate system is described, the SEA
equations stated and results from two wave theories reviewed. These theories are the
traditional, asymptotic wave approach [1] and an analytical theory [3] for the case of
rectangular plates. Section 3 outlines the method by which a finite model of the whole
system was made and FEA results cast in SEA form [4]. Numerical examples are presented
and discussed in section 4.

2. SEA AND WAVE THEORIES

In SEA a system is regarded as comprising a number of subsystems coupled together.
Excitations inject energy into the subsystems. The energy flows through the couplings to
other parts of the system, eventually being dissipated by damping. The response of a
particular subsystem is described by the time and space average energy within it. System
properties are not known exactly, but are drawn from some statistically defined ensemble.
Theoretical predictions are made of the average response of all systems within the
ensemble. The response of an individual ensemble member system will normally differ from
this ensemble average. However, it is assumed that the frequency average response of an
individual system equals the ensemble average to an acceptable accuracy if the bandwidth
is wide enough such that it contains many modes of vibration.

Central to such energy flow approaches is the estimation of input and coupling powers.
In SEA it is normally assumed that the coupling power between two subsystems is
proportional to the difference in their energy densities (or mean modal energies), the central
problem now becoming the estimation of the coupling loss factor. Approaches to SEA,
whether along modal or wave lines, involve a number of assumptions, and the SEA method
is generally held to be accurate for ‘‘weak’’ rather than ‘‘strong’’ coupling, although there
is no quantitative, widely-accepted definition of what is meant by ‘‘weak’’ and ’’strong’’
coupling strengths.

2.1.       

The system considered here is shown in Figure 1 and comprises two thin, flat, uniform
plates a and b joined uniformly along a straight edge, each plate forming one subsystem.
The length of the coupling is (nominally) d and the areas of the plates are Aa and Ab . It
is assumed that only plate a is excited and that the excitation is time-harmonic
‘‘rain-on-the-roof’’ at frequency v and of constant magnitude F2 N2/m2. Such excitation

Figure 1. System comprising two, edge-coupled plates. Plate a is excited by ‘‘rain-on-the-roof’’.
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is equivalent to averaging the energy response to point force excitation over all possible
points of application of the force. (If instead plate b is excited, results can be obtained by
exchanging the subscripts a and b in what follows.) For broadband excitation, it is
additionally assumed that the excitation is random, stationary and of constant power
spectral density.

From conservation of energy consideration it follows that

Pin =Pdiss,a +Pab, 0=Pdiss,b −Pab , (1)

where Pin , Pdiss and Pab are the input, dissipated and coupling powers (a list of symbols is
given in the Appendix). All powers and energies are implicitly assumed to be time averages.
In SEA applications, individual systems are assumed to be drawn at random from an
ensemble of systems, although this is sometimes not explicitly stated. Uncertainty exists
in that the properties of each system vary about some nominal values across the ensemble.
The uncertainty may be expressed in terms of physical and geometric properties, in terms
of modal properties (for example that the distribution of natural frequencies is random)
or in terms of wave properties, as described in section 2.2 below. In theoretical studies,
equation (1) may then be ensemble averaged. The dissipated powers are, to a good
approximation, given by

�Pdiss,a�=vha�Ea�, �Pdiss,b�=vhb�Eb�, (2)

where �·� denotes the ensemble average, E is the subsystem total energy, h the damping
loss factor and v the frequency of excitation. The assumption of coupling power
proportionality is that

�Pab�=vnahab (�Da�− �Db�), (3)

where hab is the coupling loss factor and where �D�= �E�/n is the energy density, or mean
modal energy, n being the asymptotic modal density of the subsystem. For a plate, n is
given by

n(v)= (A/4p)zm/B, (4)

where m is the mass per unit area and B the bending stiffness [2]. The SEA equations (1–3)
enable the ensemble average reponse to be predicted if the input power and coupling power
(or coupling loss factor) are known, or alternatively may be used to define the coupling
loss factor for given input and coupling powers by

hab /ha = �Pab�/�Pin�/[1− (�Pab�/�Pin�)(1+Ma /Mb )], (5)

where M=vhn=vD is the modal overlap, D being the half-power bandwidth.
In applications, equations (2, 3, 5) are assumed to hold to acceptable accuracy when

frequency average powers P̄in and P̄ab are taken, instead of ensemble averages. However,
ensemble and frequency averages are not the same, and terms such as ‘‘SEA-like’’ and
‘‘apparent’’ coupling loss factor have been used to distinguish the frequency average
behaviour of an individual system from that of the ensemble (e.g., [5]).

The system comprising two coupled plates is a common application in the SEA
literature. Systems comprising two rectangular plates have been considered in many
papers. In [6, 7], the responses of individual systems were predicted numerically using
global modes of vibration. In [8] the system properties were randomly varied to obtain
numerical responses which were then averaged over an ensemble of systems, while in [3]
a wave analysis was performed, and the deterministic results then ensemble averaged.
Finite element methods have also seen application, both in determining subsystem
properties such as modal density and in forming global system models for comparison with
SEA theories [5, 9].
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2.2.    

In the classical wave approach for the estimation of coupling power and coupling loss
factor [1] a number of assumptions and approximations are made. First, the subsystems
are assumed to be reverberant, in that the amplitude of a wave decays by a small amount
as it propagates across the subsystem. Secondly, it is assumed that diffuse wave fields are
incident upon the coupling. The third assumption is that the two wave trains incident upon
the coupling are incoherent, so that the transmission due to each alone can be superposed.
This would be the case if the receiving subsystem extended to infinity. If the transmission
coefficient (defined in terms of power wave amplitudes) of the coupling is T, then the
proportion of the incident energy that is transmitted to the receiving subsystem is given
by T̄2, the average of T2 over all incident angles. Thus the coupling power is

Pab = T̄2Pinc,a − T̄2Pinc,b , (6)

where Pinc is the power in the incident wave. Fourthly, the assumption is made that the
coupling is ‘‘weak’’ in the sense that T2�1, so that the wave reflected back into the excited
subsystem is of virtually the same amplitude as the incident wave. Since the subsystems
are reverberant, their energies can be estimated from the amplitudes of the waves incident
on the coupling so that

Pinc,a =Eacg,ad/pAa , (7)

where cg is the group velocity in the plate. The coupling loss factor is thus

ha =2T̄2d/pkaAa, (8)

k= 4zm/Bzv being the wavenumber.
In this classical theory the shape of the plates is irrelevant. Experience shows that the

above estimate is most accurate for systems where the modal overlap is high, and for this
reason this theory will be referred to here as an ‘‘asymptotic’’ theory. It is also found that
accuracy is best for subsystems with high dimensionality and whose geometries are highly
irregular.

Sometimes the asymptotic theory fails to predict accurately the broad band frequency
average response. The reasons for this failure can be traced primarily to the third
assumption, that regarding the coherence of waves incident on the coupling, since
equations (6) and (8) can be poor estimates even if all the other assumptions are satisfied.
If the subsystems are finite, the waves reflected from the coupling will eventually be
reflected from the subsystems to return to the coupling. The third assumption is therefore
equivalent to assuming that the ensemble and/or frequency average effects of this coherent
reflected wave are negligible, and this is not necessarily the case [10].

2.2.      

The wave analysis of [3] concerns specifically the case of two rectangular plates whose
edges are simply supported. The response is expressed in terms of wave components, each
component having a unique trace wavenumber along the coupling. Since the plates and
coupling are uniform, the components propagate independently through the system and
the total response is given by the sum of the responses due to each trace wavenumber
component. Expressions for the input and coupling powers for individual systems are
found. The analysis requires none of the assumptions made in the asymptotic theory and
in particular the effects of reflections within the subsystems and wave coherence are taken
fully into account. The contribution of near fields to the response and energy flows is,
however, neglected.
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The independent trace wavenumber components behave dynamically like the
one-dimensional systems discussed in [11]. There, the ensemble is defined by including
uncertainty in the phase changes experienced by waves travelling once around each
subsystem. Since the coupling and input powers depend on these phases mod 2p, the phases
are assumed to be random and (mod 2p) uniformly probable in [0, 2p]. This is equivalent
to assuming that no specific phases are preferred: it is reasonable in that the absolute phase
changes are very large, so that they are sensitive to small levels of uncertainty in system
properties and also that, when frequency averaged, the phases change rapidly with
frequency so that frequency and ensemble averages become equal, at least in many
situations [12]. It is also broadly equivalent to the assumption often made in modal
approaches, that the uncoupled subsystem modal behaviour is such that there is a uniform
probability that a subsystem natural frequency occurs at any specific frequency. In [11]
it was found that, for one-dimensional systems, the strength of coupling can be described
in terms of two parameters, g and d, which depend on the transmission coefficient of the
coupling and the levels of damping within the two subsystems. For weak coupling gQ 1,
energy essentially ‘‘leaks’’ through the coupling and the traditional wave estimates of the
coupling power and coupling loss factor are accurate. For strong coupling gq 1 there is
in effect a sharing of energy between the two subsystems. In this case the asymptotic wave
theory gives poor estimates of coupling power and coupling loss factor. (The parameter
d is only important in extreme cases where both subsystems are reverberant and one is
very lightly damped compared to the other—such cases will not be considered further
here.)

The assumptions concerning the ensemble of plate systems in [3] are similar, in that it
is assumed that the phase changes experienced by waves travelling back and forth across
the width of the plates or across the length of either plate are random and uniformly
probable in [0, 2p]. If the plates have the same wavenumbers, then the ensemble averages
of the input and coupling powers are given by [3]

�Pin�=Pin,a(1−1/kad ), Pin,a =F2Aa/16zBm

�Pab�=Pin,a
1

pma0 6 g
1

0

T2(k)
z(1+ g2(k))(1+ d2(k))

dk−
pT2(0)

2kadz(1+ g2(0))(1+ d2(0))7, (9)

where k is the ratio of the trace wavenumber to the wavenumber in the excited plate, Pin,a

is the power input to a uniform, infinite plate due to an excitation of magnitude (F2Aa )
where

g2 =T2 cosh2 md / sinh ma sinh mb , d2 =T2 sinh2 md /sinh ma sinh mb ,

m(k)= m0/z1− k2, m0 = kln/2= phl/l, md =(ma − mb )/2. (10)

Here l=A/d is the length of the rectangular plate and l the bending wavelength. The
attenuation parameters ma and mb , termed the subsystem reflectances in [3, 11], represent
the effects of damping in the subsystems, They are such that the amplitude of a wave with
trace wave number k k, which propagates from the coupling to the end of the plate and
back to the coupling, reduces by the factor exp(−m). The base reflectances ma0 = ma (0) and
mb0 play a special role in determining the responses. Since m is an increasing function of
k, they represent the minimum attenuation experienced by any wave component.

For the two-plate system, the coupling parameters g(k) and d(k) are functions of the
trace wavenumber, as is the transmission coefficient T(k). Generally, some of the trace
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Figure 2. Theoretical SEA predictions: (a) coupling power; —, theory, rectangular plates [3]; ----, asymptotic
wave theory; · · · · · · ·, low and high m0 limits. (b) coupling loss factor; —, rectangular plates [3]. +g0 =1.

wavenumber components are strongly coupled and some are weakly coupled. The total
energy flows between the plates are however normally dominated by the strongly coupled
components. For the case where the coupling is a simple support

T2 = (1− k2)/2, T̄2 =1/3. (11)

Now g is a decreasing function of k, so that the maximum value is g0 = g(0). If g0 Q 1,
then all the wave components are weakly coupled. If g0 q 1, some wave components are
strongly coupled and some weakly coupled.

2.3.  

Figure 2 shows the ensemble average coupling power and the coupling loss factor for
the case where the line of coupling is simply supported, the plates have nominally the same
thickness, are made from the same material, are wide and the length ratio lb /la =1·4. The
value of ma0 for which g0 =1 is indicated, this representing the transition from strong to
weak coupling. The estimate of coupling power given by the asymptotic theory is also
shown, and can clearly be significantly in error in the strong coupling regime, where it
substantially over-predicts both the coupling power and the coupling loss factor.

For rectangular plates the strength of coupling, and hence the physical features of the
response, depend on the coupling parameter g0. This in turn depends on the attenuation
parameter m0 (i.e., the base reflectance) and not the modal overlap M, as is sometimes
maintained. (The two parameters are however related, since M= m0kd/2p=vhn, but they
are not equivalent since the wavenumber and width of the coupled edge is also involved.)
This dependence on m0 is perhaps not surprising, if one considers the consequence of
increasing the width of the plates. Now the modal overlap increases, since the modal
density is proportional to plate area, but the input and coupling powers per unit length
of coupling, their ratio and the plate energy densities all remain constant.

3. FINITE ELEMENTS AND SEA

The method used to obtain finite element results and then cast them in SEA form is the
global approach described in [4]. The aim in this paper is to determine the response of the
system to time harmonic ‘‘rain-on-the-roof’’ excitation, the response quantities of interest
being the system and subsystem time average potential and kinetic energies and the time
average input, coupling and dissipated powers. This time harmonic response is then
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frequency averaged as required. The response to ‘‘rain’’ excitation is regarded as being
equivalent to averaging the responses to individual point excitations applied at all possible
excitation points.

The steps involved are briefly as follows. First the system is discretized and mass and
stiffness matrices determined. In the examples below this was done using a commercial
finite element package, ANSYS. Such packages, however, are not well suited to
determining the response to time-harmonic ‘‘rain’’, so subsequent processing was
performed using Matlab. Expressions for system response quantities (energies, powers,
etc.) are developed. The next step is to determine the response to a time harmonic point
force. This decomposed into global modes of vibration (i.e., modes of the whole system)
to make further calculations more time-efficient. Finally the response to time harmonic
point ‘‘rain-on-the-roof’’ excitation is found.

4. NUMERICAL INVESTIGATION

Numerical investigations were performed on a number of different 2-plate systems as
described below. Finite element predictions under various damping conditions were
frequency averaged and compared with the SEA theories described above.

4.1.  

4.1.1. Physical and geometric properties
Each system comprised two, straight-edged plates which were edge-coupled. All edges,

including the line of coupling, were simply supported. In all cases the plates were of the
same material (steel), with the properties given in Table 1. In all cases the length of the
coupled edge was 0·9 m and the areas of the smaller and larger plates were 0·9 m2 and
1·26 m2. Systems comprising plates of differing shapes were analysed, the shapes being
either rectangular (R), distorted rectangular pentagon (D) (with the two sides adjacent to
the coupling perpedicular to the coupled edge) or pentagonal (P) as shown in Figure 3.
The plate areas were chosen so that the length ratio of the rectangular plates was 1·4, this
number being such as to reduce possible ‘‘modal line-up’’ effects when frequency averages
were subsequently taken [12]. One plate was assumed to be excited by ‘‘rain’’ of unit
amplitude.

The shapes offer different amounts of irregularity, and all 9 possible combinations of
two plates were analyzed (e.g., RR, RP, PR etc.). In each case in the post-processing either
the smaller or larger plate could be excited, giving 18 different FE/SEA analyses.

The transmission coefficient of the coupling is given in equation (11). The modal
densities are independent of frequency and are given in Table 1.

4.1.2. FEA
FEA was performed using ANSYS. A total of 408 shell elements (type 63) were used,

giving a total of 1155 nodal degrees of freedom. Of these, 363 were retained as ‘‘master’’

T 1

Physical and geometric properties (SI units)

Elastic modulus 2×1011 Length of coupled edge 0·9
Density 8×103 Plate area (a, b) 0·9, 1·26
Poisson’s ratio 0·3 Modal density (a, b) 0·0297, 0·0416
Thickness 0·01 System total modal density 0·0714
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Figure 3. Plate shapes: (a) smaller plate and (b) larger plate.

degrees of freedom, these being the out-of-plane displacements. Mass and stiffness
matrices, natural frequencies and mode shapes were found. The model gave acceptable
accuracy for frequencies up to 2 kHz and above.

4.1.3. Post-processing: damping and frequency averaging
The amount of damping in the system can be described variously by the damping loss

factor h, the bandwidth D=vh, the modal overlap M= nD (specified either for plate a
or plate b or in terms of the global modes of the whole system) or the base reflectance
m0, which for the rectangular plates here is given by m0 = hkl/2, at least for small h. For
non-rectangular plates the effective base reflectance is assumed to be m0 = hkA/2d. For
rectangular plates the base reflectance is the appropriate parameter to describe the effects
of damping.

When post-processing the finite element results to determine the discrete frequency
response, the loss factor can be assumed to be dependent on frequency. This can be done
so as to maintain the same ‘‘amount’’ of damping over the whole frequency range (i.e.,
to make the base reflectance or the modal overlap independent of frequency). Two different
damping models were considered, although results will be given primarily for the first. In
this, the loss factor is assumed to vary as v−1/2, so that m0 is frequency independent. In
the second damping model, the loss factor varies with frequency as v−1, in which case the
model overlap (and the half-power bandwidth) is constant. In both cases the loss factor
is assumed to be the same for both plates. Values used for the damping parameters are
given in Table 2.

Frequency averaging was performed by averaging discrete frequency responses
calculated at frequencies whose resolution was less or equal to one-quarter of the
half-power bandwidth. Numerical integration was used here rather than the approximate,
closed form integrals given in [4]. Response components were calculated for all modes
retained in the finite element analysis and not just those modes resonant in the frequency
band.
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T 2

Damping parameters. Corresponding entries in each column yield the same amount of
damping at 1 kHz

h 0·004 0·007 0·01 0·02 0·04 0·07 0·1 0·2
ma0 0·0408 0·0713 0·102 0·204 0·408 0·713 1·019 2·038

M=Ma +Mb 0·286 0·500 0·714 1·43 2·86 5·00 7·14 14·3
D (Hz) 4 7 10 20 40 70 100 200

4.2.   

As an example of discrete frequency response, Figure 4 shows the input and coupling
powers for RR and PP plates at a constant total modal overlap (i.e., modal overlap based
on the total, global modal density). The half-power bandwidth is 7 Hz, the loss factor 0·007
at 1 kHz. Clear resonant behaviour can be seen. There are also qualitative differences
between the powers for RR and PP plate systems, the variation for RR plates being greater,
particularly with regard to the coupling power.

4.3.   

Frequency averages were calculated by averaging over a 400 Hz bandwidth. This
contains on average about 12 and 16 ‘‘uncoupled’’ natural frequencies of the individual
plates, about 28 global natural frequencies. Thus the effects of there being a finite number
of modes within this band would be expected to be small.

Figure 4. Discrete frequency response, constant modal overlap M=0·5: (a) input power, RR plates; (b) input
power, PP plates; (c) coupling power, RR plates; (d) coupling power, PP plates.
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Figure 5. Coupling power as a function of base reflectance of driven plate, smaller plate excited: centre
frequency at (a) 500 Hz; (b) 1000 Hz; (c) 1500 Hz. Ensemble averages: —, theory, rectangular plates; ----,
asymptotic wave theory. FE frequency averages: +RR plates; (PP plates. · · · · · · ·, g0 =1.

4.3.1. Input power
The frequency average input powers P̄in are approximately equal to the asymptotic,

ensemble average expression of equation (9) [2]. Apart from minor fluctuations, varying
levels of damping do not influence the average input power. Differences can be attributed
to finite-width and finite-length effects (these tending to reduce the power input by forces
applied close to a boundary), to the fact that theoretical predictions ignore near-field effects
and to finite element modelling errors.

4.3.2. Coupling power
Generally the variation with frequency of the frequency average coupling power P̄ab , per

unit frequency average input power P̄in , is small if m0 is constant. There are, however,
significant and substantial variations of coupling power with base reflectance (i.e., with the
level of damping), and these variations themselves depend on the specific shapes of the
subsystems, i.e., the amount of irregularity in the system. Examples are shown in Figures
5 and 6. These show the coupling power as a function of the base reflectance m0 of the
driven plate at each of the 3 centre frequencies with m0 being independent of frequency.
In Figure 5 the smaller plate is excited, while in Figure 6 the larger plate is excited.
Numerical results are given for RR and PP plate systems. Also shown are the analytical
expression for rectangular plates (section 2.3, equation (9)) and the estimate of coupling
power provided by the asymptotic SEA wave theory described in section 2.2. The levels
of reflectance where g0 =1 and which, for RR plates, mark transition from strong coupling
(small m0) to weak coupling (large m0), are also indicated.
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Generally, for large m0 (weak coupling, g0 Q 1) the FE calculated coupling powers for
the actual systems and the ensemble average SEA predictions are nearly equal, differences
being attributable to the causes described in the previous subsection. (Theoretical
predictions also assume h is small, and this introduces some errors at higher damping
levels.) For small m0 (strong coupling, g0 q 1), however, there are substantial differences
between the numerical results for plates of different shape. The RR results agree well with
the analytical predictions, given the fluctuations observed in the average powers as a
function of frequency. The PP results agree more closely with the asymptotic SEA
prediction.

This behaviour is illustrated again in Figures 7 and 8, in which numerical results for
nine different 2-plate systems are shown, the smaller plate being excited. Figure 7 shows
the coupling power for the nine systems at each of the 3 centre frequencies, while Figure
8 shows the coupling powers at the 3 centre frequencies for each of the 9 systems. In both
figures m0 is constant. (In Figure 7, h and M abscissae are given at each centre frequency.)
In the strong coupling region the coupling power for RR plates is the smallest, while that
for PP plates (which, in a sense, have the most irregularity) is usually, but not always, the
largest.

The general behaviour is clear: for large m0 there is little dependence on plate geometry
and SEA theories give accurate predictions, while for low m0 the coupling power depends
significantly on the specific subsystem geometry, in other words on the degree of
irregularity of the subsystems. The transition between these regions can be defined by the
parameter g0. The reasons behind these effects of subsystem irregularity can be explained
in wave or modal terms.

Figure 6. Coupling power as a function of base reflectance of driven plate, larger plate excited: centre frequency
at (a) 500 Hz; (b) 1000 Hz; (c) 1500 Hz. Ensemble averages: —, theory, rectangular plates; ----, asymptotic wave
theory. FE frequency averages: +RR, (PP plates. · · · · · · ·, g0 =1.
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Figure 7. Coupling power as a function of base reflectance, smaller plate excited: centre frequency at (a)
500 Hz; (b) 1000 Hz; (c) 1500 Hz. Ensemble averages; -·-·-·, theory, rectangular plates; ----, asymptotic wave
theory. —, FE frequency averages, 9 two-plate systems. · · · · · · ·, g0 =1.

4.3.2.1. Subsystem irregularity and wave coherence. From a wave perspective, sub-
system irregularity affects the degree to which waves incident upon opposite sides of
the coupling are correlated [10]. For small levels of damping, strong reflected waves
are incident upon the coupling which, when ensemble or frequency averaged,
give substantial coherent contributions to the net coupling power. The primary effect
is to re-radiate power back from the receiving subsystem, hence reducing the coupling
power from the value predicted by the asymptotic SEA wave theory. For
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larger damping levels the amplitudes of the reflections are reduced and so, too, is the effect
of wave coherence on the net coupling power.

When the subsystems are irregularly shaped a wave with a given trace wavenumber
along the coupling will be scattered from the subsystem into wave components which arrive
back at the coupling with different trace wavenumbers: the wave field thus tends to become
more diffuse. The net coherent power is reduced because wave components with different
trace wavenumbers are incoherent when their interaction is averaged along the line of
coupling—only the scattered component with the same trace wavenumber contributes to
the coherent power, and irregularity reduces the amplitude of this component because
energy is scattered into components with different trace wavenumbers. For a rectangular
plate the irregularity is least, a wave is reflected back from the subsystem without change
in trace wavenumber, coherence effects are strongest and the coupling power hence least.

4.3.2.2. Subsystem irregularity and global mode localisation. The effects of irregularity can
also be interpreted in terms of the manner in which global mode shapes are localised within
one or other subsystem [15] and some relevant results from [15] are now summarised. The
response at point x2 per unit excitation at point x1 is given by a sum of global mode
components as

u(v, x1, x2)= s
j

aj (v)fj (x1)fj (x2), aj (v)=1/(v2
j (1+ ih)−v2), (12)

Figure 8. Coupling power as a function of base reflectance, smaller plate excited, various two-plate systems:
ensemble averages: -·-·-·, theory, rectangular plates; ----, asymptotic wave theory. —, FE frequency averages,
centre frequencies at 500 Hz, 1000 Hz and 1500 Hz. · · · · · · ·, g0 =1.
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where aj (v) is the modal receptance, vj the natural frequency and fj (x) the mode shape
of the jth mode, mass-normalised such that

g mfj (x)fk (x) dx= djk . (13)

The time average kinetic energy density, for example, is determined by the squared
response, and is given by

DT = 1
4mv2=u(v, x1, x2)=2 = s

j,k

bjk (v)[mfj (x1)fk (x1)][mfj (x2)fk (x2)],

bjk =v2 Re{aja
*
k }/(4m). (14)

The frequency average kinetic energy density taken over a bandwidth V is thus given by

D̄T = s
j,k

Gjk [mfj (x1)fk (x1)][mfj (x2)fk (x2)], Gjk =
1
V gV

bjk (v) dv (15)

Suppose now that excitations are applied at all points x1 in subsystem a. The total kinetic
energy in subsystem b is then found by integrating equation (15) over x1 and x2 and,
assuming m is constant, is given by

T̄b = s
j,k

Gjkc
(a)
jk c(b)

jk , c(a)
jk =gAa

mfj (x1)fk (x1) dx1, c(b)
jk =gAb

mfj (x2)fk (x2) dx2, (16)

where c(a,b)
jk is the kinetic energy distribution factor for the (j, k)th mode pair. Since the

mode shapes are mass normalised,

c(a)
jj +c(b)

jj =1, c(a)
jk +c(b)

jk =0, j$ k. (17)

For j= k, c(a)
jj indicates the proportion of kinetic energy stored in subsystem a when the

system vibrates in the jth mode. For j= k, c(a)
jk gives a measure of the orthogonality of

the (j, k)th mode pair over subsystem a. Similar expressions can be developed for the input
power and potential energy (which, when frequency averaged, is very nearly equal to the
kinetic energy) [15].

Now suppose that the damping is light so that aj shows a distinct resonance peak around
its natural frequency vj . Then Gjk tends to be small except for those mode pairs j and k
which ‘‘overlap’’, i.e., whose natural frequencies lie within each others half-power
bandwidths. The terms Gjj are necessarily large. The response is therefore dominated by
resonant modes. (Note however that it is the cross-modal coupling which gives rise to the
coupling energy flow.)

Consider first the case where the modal overlap is small (M�1). Now the response (i.e.,
the kinetic energy) in the undriven subsystem, is dominated by the terms Gjj and is given
by

T̄b = s
j

Gjjc
(a)
jj c(b)

jj . (18)

A large response, and hence a large coupling power, arises from those modes for which
the product lj =c(a)

jj c(b)
jj =c(a)

jj (1−c(a)
jj ) is large. Such modes are not only relatively well
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Figure 9. Kinetic energy distribution factor c(a)
jj for mode j as a function of frequency: (a) RR plates; (b) PP

plates.

excited (i.e., c(a)
jj large), but also respond relatively strongly in the undriven subsystem (i.e.,

c(b)
jj large). Modes whose mode shapes are large only within one subsystem, i.e., modes

which are localised within one subsystem, are either weakly excited or respond weakly, and
hence give a small contribution to the response in the undriven subsystem.

Figure 9 shows the proportion c(a)
jj of kinetic energy stored in the smaller plate in each

mode of vibration. Results for both RR and PP plates are given. There is a marked
tendency for the RR global modes to be more localised, in that the energy is stored
primarily within one or the other plate (i.e., c(a)

jj is either small or large). On the other hand,
the kinetic energy for each of the global modes of the PP plates tends to be more spread
out between the two plates. Figure 10 shows the cumulative probability distribution for
c(a)

jj for the first 120 modes of each system. This illustrates again the tendency for global
mode localisation to occur to a greater degree in the RR plates. Hence the response in
the undriven plate and the coupling power are substantially less for the RR plates in the
low m0, low M region.

If the modal overlap is higher then Gjk will also be substantial for overlapping modes,
typically for these modes for which =k− j=QM. These cross-modal terms are negative
since, from the orthogonality conditions, c(a)

kj c
(b)
jk =−c(a)2

jk . For the PP plates they are

Figure 10. Cumulative probability distribution of c(a)
jj for the lowest 120 modes: —, RR plates; ----, PP plates.
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somewhat larger in magnitude than for the RR plates and hence act to reduce the difference
between their responses as modal overlap increases.

4.4.        

The coupling loss factor is defined in terms of ensemble average powers by equation (5),
with the wave estimates being given by equations (8) and (9). Apparent coupling loss
factors for specific systems and within specific frequency bands are given by equation (5)
when frequency average powers are used. Examples for the plate systems discussed here
are shown in Figures 11–13.

In general, for large m0 (i.e., large damping and weak coupling in the sense g0 Q 1) the
apparent coupling loss factor is relatively insensitive to subsystem geometry and is
approximately equal to the asymptotic estimate ha, although agreement is poorer at lower
frequencies. For lighter damping (smaller m0 and strong coupling) the apparent coupling
loss factor decreases and is sensitive to plate geometry. The shapes of these curves are very
similar to those found in [8, 14] for plate systems with irregularity.

Figure 11. Coupling loss factor as a function of base reflectance, smaller plate excited: centre frequency at
(a) 500 Hz; (b) 1000 Hz; (c) 1500 Hz. — theory, rectangular plates; FE frequency averages: +RR plates; (PP
plates. · · · · · · ·, g0 =1.
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4.5. ‘‘’’
If the SEA equations are to hold for a given system then the coupling loss factors must

satisfy the relation nah
(a)
ab = nbh

(b)
ba [1], where the superscripts indicate which subsystem is

being excited. This is often referred to as a ‘‘reciprocity’’ relation. It is equivalent to

(MaP(a)
ab /P(a)

in )/(MbP(b)
ba /P(b)

in )=1, (19)

Figure 12. Coupling loss factor as a function of base reflectance, smaller plate excited: centre frequency at
(a) 500 Hz; (b) 1000 Hz; (c) 1500 Hz. ----, theory, rectangular plates; —, FE frequency averages: 9 two-plate
systems. · · · · · · ·, g0 =1.
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Figure 13. Coupling loss factor as a function of base reflectance, smaller plate excited, various two-plate
systems. ----, theory, rectangular plates; —, FE frequency averages, centre frequencies at 500 Hz, 1000 Hz and
1500 Hz. · · · · · · ·, g0 =1.

[13]. Figure 14 shows this power ratio for frequency average powers, the ratio being close
to unity for all geometries and centre frequencies over a range of m0. It may be inferred
from this that SEA is applicable to such 2-plate systems so long as the appropriate coupling

Figure 14. ‘‘Reciprocity’’: power ratios as a function of base reflectance of smaller plate, 9 two-plate systems.
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loss factor is used, this differing from the traditional, asymptotic expression (equation (8))
and being dependent on subsystem geometry when the coupling is strong.

5. CONCLUDING REMARKS

This paper concerned the SEA of systems comprising two coupled plates. Numerical
estimates of frequency average powers and coupling loss factors were found from FE
models of the systems. These were compared with theoretical predictions found from
traditional, asymptotic SEA and an analytical solution applicable to coupled, rectangular
plates. While there are of course dangers in drawing conclusions from a limited number
of numerical examples of the behaviour of individual systems, the results presented are
typical and support the following conclusions.

There is a qualitative difference between the behaviours at low and high levels of
damping, more specifically, for the cases of strong and weak coupling. For high enough
damping (i.e., weak coupling), the detailed subsystem geometry is unimportant and the
traditional, asymptotic theory gives accurate predictions. However, for lighter damping,
so that the coupling is strong, the coupling power depends significantly on subsystem
irregularity. The asymptotic theory overestimates both the coupling power and the
coupling loss factor, particularly for the case of rectangular plates. These effects are of
course in accordance with the observation that SEA ‘‘works best’’ when applied to
irregular systems.

One implication is that if the coupling is strong, more information about each subsystem
is required to give accurate response predictions than is normally used in SEA
models—e.g., not only the area but also the shape of each plate subsystem is important
in determining the ensemble or frequency average response. Energy flow methods are
currently deficient in this regard.

The behaviour observed was interpreted in terms of localisation of the global mode
shapes of the system and in terms of coherence of waves incident upon the coupling:
increasing irregularity tends to ‘‘spread out’’ the mode shapes across the system and to
scatter waves into different directions of propagation so that coherence effects are reduced.

The coupling parameter g0 (i.e., the maximum value of g given by equation (10)) can
be used to give an estimate of the strength of coupling. This parameter indicates the relative
strengths of transmission through the coupling and of damping within the subsystems. To
a good approximation, for these edge coupled plates

g2
0 =T2/ma0mb0, (20)

where the base reflectances indicate the effects of damping and are given by

m0 = hkA/2d (21)

For rectangular plates m0 rather than modal overlap M, is the appropriate parameter with
which to describe the effects of damping. The parameter g0 gives a conservative estimate
of coupling strength for irregularly shaped subsystems.

Finally it is worth noting that in most structural applications the levels of damping, the
magnitudes of transmission coefficients and the frequency ranges involved are such that
the coupling is strong. Moreover, plates tend to be rectangular rather than highly irregular,
so that the effects described here are likely to be quite widespread.
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APPENDIX: LIST OF SYMBOLS

A area
B bending stiffness
cg group velocity
d length of coupled edge
D energy density
E energy
F force
k wavenumber
l plate length, rectangular plate
m mass per unit area
M modal overlap
n asymptotic modal density
Pab coupling power from subsystem a to subsystem b
Pdiss dissipated power
Pin input power
Pinc incident power
T transmission coefficient, kinetic energy
V potential energy
a modal receptance, equation (13)
g, d coupling parameters, equation (10)
g0 max(g)
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D half-power bandwidth
h damping, coupling loss factor
k ratio of trace wavenumber to wavenumber
l modal kinetic energy localisation factor
m reflectance
m0 base reflectance, equation (10)
f mode shape
c modal kinetic energy distribution factor, equation (32)
v frequency
V averaging bandwidth
�·� ensemble average

¯ frequency average
Subscripts
a, b plate
a asymptotic, infinite value


